The Perfect Binary One-Error-Correcting Codes of Length 15: Part II--Properties
نویسندگان
چکیده
A complete classification of the perfect binary oneerror-correcting codes of length 15 as well as their extensions of length 16 was recently carried out in [P. R. J. Östergård and O. Pottonen, “The perfect binary one-error-correcting codes of length 15: Part I—Classification,” submitted for publication]. In the current accompanying work, the classified codes are studied in great detail, and their main properties are tabulated. The results include the fact that 33 of the 80 Steiner triple systems of order 15 occur in such codes. Further understanding is gained on full-rank codes via i-components, as it turns out that all but two full-rank codes can be obtained through a series of transformations from the Hamming code. Other topics studied include (non)systematic codes, embedded one-error-correcting codes, and defining sets of codes. A classification of certain mixed perfect codes is also obtained.
منابع مشابه
The Perfect Binary One-Error-Correcting Codes of Length 15: Part I--Classification
A complete classification of the perfect binary one-error-correcting codes of length 15 as well as their extensions of length 16 is presented. There are 5 983 such inequivalent perfect codes and 2 165 extended perfect codes. Efficient generation of these codes relies on the recent classification of Steiner quadruple systems of order 16. Utilizing a result of Blackmore, the optimal binary one-er...
متن کاملTwo optimal one-error-correcting codes of length 13 that are not doubly shortened perfect codes
The doubly shortened perfect codes of length 13 are classified utilizing the classification of perfect codes in [P.R.J. Österg̊ard and O. Pottonen, The perfect binary one-error-correcting codes of length 15: Part I— Classification, IEEE Trans. Inform. Theory, to appear]; there are 117821 such (13,512,3) codes. By applying a switching operation to those codes, two more (13,512,3) codes are obtain...
متن کاملOn Optimal Binary One-Error-Correcting Codes of Lengths
Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...
متن کاملOn Optimal Binary One-Error-Correcting Codes of Lengths $2^m-4$ and $2^m-3$
Best and Brouwer [Discrete Math. 17 (1977), 235– 245] proved that triply-shortened and doubly-shortened binary Hamming codes (which have length 2m − 4 and 2m − 3, respectively) are optimal. Properties of such codes are here studied, determining among other things parameters of certain subcodes. A utilization of these properties makes a computeraided classification of the optimal binary one-erro...
متن کاملTwo-Error Correcting Bose-Chaudhuri Codes are Quasi-Perfect
Bose and Chaudhuri (1960) have introduced a class of binary errorcorrecting codes of block length 2 ~ 1, m = 2,3,• • which we refer to here as B-C codes. An efficient decoding scheme has been devised for them by Peterson (1960), and generalized to the natural extension of the B-C Codes to codes in pm symbols by D. Gorenstein and N. Zierler (1960). Two further properties of B-C codes are establi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 56 شماره
صفحات -
تاریخ انتشار 2010